Part Number Hot Search : 
P1000A 2SD601R A2810 MN1227 MCJ36 MCJ36 2SB740 BPC5010
Product Description
Full Text Search
 

To Download IRGS6B60KDPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  insulated gate bipolar transistor withultrafast soft recovery diode  01/07/13 absolute maximum ratings  parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 18 i c @ t c = 100c continuous collector current 10 i cm pulsed collector current 26 i lm clamped inductive load current  26 a i f @ t c = 25c diode continuous forward current 18 i f @ t c = 100c diode continuous forward current 10 i fm diode maximum forward current 26 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 90 p d @ t c = 100c maximum power dissipation 36 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) low vce (on) non punch through igbt technology. low diode vf. 10 s short circuit capability. square rbsoa. ultrasoft diode reverse recovery characteristics. positive vce (on) temperature coefficient. lead-free benefits  www.irf.com 1 benchmark efficiency for motor control. rugged transient performance. low emi. excellent current sharing in parallel operation. thermal resistance  parameter min. typ. max. units r jc junction-to-case - igbt CCC CCC 1.4 r jc junction-to-case - diode CCC CCC 4.4 r cs case-to-sink, flat, greased surface CCC 0.50 CCC c/w r ja junction-to-ambient, typical socket mount  CCC CCC 62 r ja junction-to-ambient (pcb mount, steady state)  CCC CCC 40 wt weight CCC 1.44 CCC g irgb6b60kdpbfIRGS6B60KDPBF irgsl6b60kdpbf e g n-channel c v ces = 600v i c = 10a, t c =100c t sc > 10 s, t j =150c v ce(on) typ. = 1.8v d 2 pak IRGS6B60KDPBF to-220ab irgb6b60kdpbf to-262 irgsl6b60kdpbf  downloaded from: http:///
irgb/s/sl6b60kdpbf 2 www.irf.com electrical characteristics @ t j = 25c (unless otherwise specified) ref.fig. 5, 6,79,10,11 9,10,11 12 parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 CCC CCC v v ge = 0v, i c = 500 a ? v (br)ces / ? t j temperature coeff. of breakdown voltage CCC 0.3 CCC v/c v ge = 0v, i c = 1.0ma, (25c-150c) v ce(on) collector-to-emitter saturation voltage 1.5 1.80 2.20 v i c = 5.0a, v ge = 15v CCC 2.20 2.50 i c = 5.0a,v ge = 15v, t j = 150c v ge(th) gate threshold voltage 3.5 4.5 5.5 v v ce = v ge , i c = 250 a ? v ge(th) / ? t j temperature coeff. of threshold voltage CCC -10 CCC mv/c v ce = v ge , i c = 1.0ma, (25c-150c) g fe forward transconductance CCC 3.0 CCC s v ce = 50v, i c = 5.0a, pw=80 s i ces zero gate voltage collector current CCC 1.0 150 av ge = 0v, v ce = 600v CCC 200 500 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop CCC 1.25 1.45 i c = 5.0a CCC 1.20 1.40 v i c = 5.0a t j = 150c i ges gate-to-emitter leakage current CCC CCC 100 na v ge = 20v 8 parameter min. typ. max. units conditions qg total gate charge (turn-on) CCC 18.2 CCC i c = 5.0a qge gate - emitter charge (turn-on) CCC 1.9 CCC nc v cc = 400v qgc gate - collector charge (turn-on) CCC 9.2 CCC v ge = 15v e on turn-on switching loss CCC 110 210 ji c = 5.0a, v cc = 400v e off turn-off switching loss CCC 135 245 v ge = 15v,r g = 100 , l =1.4mh e tot total switching loss CCC 245 455 ls = 150nh t j = 25c  t d(on) turn-on delay time CCC 25 34 i c = 5.0a, v cc = 400v t r rise time CCC 17 26 v ge = 15v, r g = 100 l =1.4mh t d(off) turn-off delay time CCC 215 230 ns ls = 150nh, t j = 25c t f fall time CCC 13.2 22 e on turn-on switching loss CCC 150 260 i c = 5.0a, v cc = 400v e off turn-off switching loss CCC 190 300 jv ge = 15v,r g = 100 , l =1.4mh e tot total switching loss CCC 340 560 ls = 150nh t j = 150c  t d(on) turn-on delay time CCC 28 37 i c = 5.0a, v cc = 400v t r rise time CCC 17 26 v ge = 15v, r g = 100 l =1.4mh t d(off) turn-off delay time CCC 240 255 ns ls = 150nh, t j = 150c t f fall time CCC 18 27 c ies input capacitance CCC 290 CCC v ge = 0v c oes output capacitance CCC 34 CCC pf v cc = 30v c res reverse transfer capacitance CCC 10 CCC f = 1.0mhz t j = 150c, i c = 26a, vp =600v v cc = 500v, v ge = +15v to 0v, st j = 150c, vp =600v, r g = 100 v cc = 360v, v ge = +15v to 0v erec reverse recovery energy of the diode CCC 90 175 jt j = 150c t rr diode reverse recovery time CCC 70 80 ns v cc = 400v, i f = 5.0a, l = 1.4mh i rr diode peak reverse recovery current CCC 10 14 a v ge = 15v,r g = 100 , ls = 150nh switching characteristics @ t j = 25c (unless otherwise specified) rbsoa reverse bias safe operting area full square scsoa short circuit safe operting area 10 CCC CCC ref.fig. ct1 ct4 ct4 13,15 wf1wf2 4 ct2 ct3 wf4 17,18,19 20, 21 ct4,wf3 ct4 r g = 100 14, 16 ct4 wf1wf2 note:  to  are on page 15 downloaded from: http:///
irgb/s/sl6b60kdpbf www.irf.com 3 fig. 1 - maximum dc collector current vs. case temperature fig. 2 - power dissipation vs. case temperature fig. 3 - forward soa t c = 25c; t j 150c fig. 4 - reverse bias soa t j = 150c; v ge =15v 0 20 40 60 80 100 120 140 160 t c (c) 0 10 20 30 40 50 60 70 80 90 100 p t o t ( w ) 1 10 100 1000 10000 v ce (v ) 0.1 1 10 100 i c ( a ) 10 s 100 s 1ms dc 10 100 1000 v ce (v) 0 1 10 100 i c a ) 0 20 40 60 80 100 120 140 160 t c (c) 0 5 10 15 20 i c ( a ) downloaded from: http:///
irgb/s/sl6b60kdpbf 4 www.irf.com fig. 6 - typ. igbt output characteristics t j = 25c; tp = 80 s fig. 5 - typ. igbt output characteristics t j = -40c; tp = 80 s fig. 8 - typ. diode forward characteristics tp = 80 s fig. 7 - typ. igbt output characteristics t j = 150c; tp = 80 s 0123456 v ce (v) 0 2 4 6 8 10 12 14 16 18 20 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0123456 v ce (v) 0 2 4 6 8 10 12 14 16 18 20 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0.0 0.5 1.0 1.5 2.0 v f (v) 0 5 10 15 20 25 30 i f ( a ) -40c 25c 150c 0123456 v ce (v) 0 2 4 6 8 10 12 14 16 18 20 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v downloaded from: http:///
irgb/s/sl6b60kdpbf www.irf.com 5 fig. 10 - typical v ce vs. v ge t j = 25c fig. 9 - typical v ce vs. v ge t j = -40c fig. 11 - typical v ce vs. v ge t j = 150c fig. 12 - typ. transfer characteristics v ce = 50v; tp = 10 s 5 1 01 52 0 v ge (v ) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 3.0a i ce = 5.0a i ce = 10a 51 01 52 0 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 3.0a i ce = 5.0a i ce = 10a 0 5 10 15 20 v ge (v) 0 5 10 15 20 25 30 35 40 i c e ( a ) t j = 25c t j = 150c t j = 150c t j = 25c 51 01 52 0 v ge (v) 0 2 4 6 8 10 12 14 16 18 20 v c e ( v ) i ce = 3.0a i ce = 5.0a i ce = 10a downloaded from: http:///
irgb/s/sl6b60kdpbf 6 www.irf.com fig. 14 - typ. switching time vs. i c t j = 150c; l=1.4mh; v ce = 400v r g = 100 ; v ge = 15v fig. 13 - typ. energy loss vs. i c t j = 150c; l=1.4mh; v ce = 400v r g = 100 ; v ge = 15v fig. 16 - typ. switching time vs. r g t j = 150c; l=1.4mh; v ce = 400v i ce = 5.0a; v ge = 15v fig. 15 - typ. energy loss vs. r g t j = 150c; l=1.4mh; v ce = 400v i ce = 5.0a; v ge = 15v 0 50 100 150 200 r g ( ) 0 50 100 150 200 250 e n e r g y ( j ) e on e off 0 5 10 15 20 i c (a) 0 100 200 300 400 500 600 700 e n e r g y ( j ) e off e on 0 5 10 15 20 i c (a) 1 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 50 100 150 200 r g ( ) 1 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on downloaded from: http:///
irgb/s/sl6b60kdpbf www.irf.com 7 fig. 17 - typical diode i rr vs. i f t j = 150c fig. 18 - typical diode i rr vs. r g t j = 150c; i f = 5.0a fig. 20 - typical diode q rr v cc = 400v; v ge = 15v;t j = 150c fig. 19 - typical diode i rr vs. di f /dt v cc = 400v; v ge = 15v; i ce = 5.0a; t j = 150c 0 50 100 150 200 r g ( ) 0 4 8 12 16 20 i r r ( a ) 0 200 400 600 800 1000 di f /dt (a/ s) 0 4 8 12 16 20 i r r ( a ) 0 5 10 15 20 i f (a) 0 5 10 15 20 25 i r r ( a ) r g = 22 r g = 47 r g = 100 r g = 150 0 200 400 600 800 1000 di f /dt (a/ s) 0 200 400 600 800 1000 1200 q r r ( n c ) 22 47 100 150 10a 5.0a 3.0a downloaded from: http:///
irgb/s/sl6b60kdpbf 8 www.irf.com fig. 21 - typical diode e rr vs. i f t j = 150c fig. 23 - typical gate charge vs. v ge i ce = 5.0a; l = 600 h fig. 22 - typ. capacitance vs. v ce v ge = 0v; f = 1mhz 1 10 100 v ce (v ) 1 10 100 1000 c a p a c i t a n c e ( p f ) cies coes cres 0 5 10 15 20 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e ( v ) 300v 400v 0 5 10 15 i f (a) 50 100 150 200 250 300 e n e r g y ( j ) 47 22 100 150 downloaded from: http:///
irgb/s/sl6b60kdpbf www.irf.com 9 fig 25. maximum transient thermal impedance, junction-to-case (diode) fig 24. maximum transient thermal impedance, junction-to-case (igbt) 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+0 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.708 0.000220.447 0.00089 0.219 0.01037 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri ri (c/w) i (sec) 1.194 0.0001722.424 0.001517 0.753 0.080325 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri downloaded from: http:///
irgb/s/sl6b60kdpbf 10 www.irf.com fig.c.t.1 - gate charge circuit (turn-off) fig.c.t.2 - rbsoa circuit 1k vcc dut 0 l fig.c.t.3 - s.c.soa circuit fig.c.t.4 - switching loss circuit fig.c.t.5 - resistive load circuit l rg vcc diode clamp / dut dut / driver - 5v rg vcc dut r = v cc i cm l rg 80 v dut 480v + - dc driver dut 360v downloaded from: http:///
irgb/s/sl6b60kdpbf www.irf.com 11 -50 0 50 100 150 200 250 300 350 400 450 -0.20 0.30 0.80 time( s) v ce (v) -1 0 1 2 3 4 5 6 7 8 9 i ce (a) 90% i ce 5% v ce 5% i ce eof f loss tf -100 0 100 200 300 400 500 16.00 16.10 16.20 16.30 16.40 time ( s) v ce (v) -5 0 5 10 15 20 25 i ce (a) test current 90% test current 5% v ce 10% test current tr eon loss -450 -400 -350 -300 -250 -200 -150 -100 -50 0 50 -0.06 0.04 0.14 0.24 time ( s) v f (v) -12 -10 -8 -6 -4 -2 0 2 4 6 8 i f (a) pe a k i rr t rr q rr 10% peak irr 0 100 200 300 400 500 -5.00 0.00 5.00 10.00 15.00 time ( s) v ce (v) 0 10 20 30 40 50 i ce (a) v ce i ce fig. wf1- typ. turn-off loss waveform @ t j = 150c using fig. ct.4 fig. wf2- typ. turn-on loss waveform @ t j = 150c using fig. ct.4 fig. wf3- typ. diode recovery waveform @ t j = 150c using fig. ct.4 fig. wf4- typ. s.c waveform @ t j = 150c using fig. ct.3 downloaded from: http:///
irgb/s/sl6b60kdpbf 12 www.irf.com example: in the assembly line "c" t his is an irf1010 lot code 1789 as s e mb le d on ww 19, 1997 part number assembly lot code dat e code year 7 = 1997 line c week 19 logo rect ifier int e rnat ional note: "p" in assembly line position indicates "lead-free" 
  
         
       
         
      downloaded from: http:///
irgb/s/sl6b60kdpbf www.irf.com 13  

       

  dimensions are shown in millimeters (inches) note: "p" in as s embly line pos ition indicates "l ead-f ree" f530s this is an irf530s wit h lot code 8024 as s emble d on ww 02, 2000 in the assembly line "l" assembly lot code international rectifier logo part number dat e code year 0 = 2000 we e k 02 line l  f530s a = as s e mb l y s i t e code we e k 02 p = de s i gnat e s l e ad- f r e e pr oduct (opt ional) rect ifier internat ional logo lot code assembly year 0 = 2000 dat e code part number  
         
      downloaded from: http:///
irgb/s/sl6b60kdpbf 14 www.irf.com to-262 part marking information to-262 package outlinedimensions are shown in millimeters (inches) assembly lot code rectifier int ernat ional as s e mb l e d on ww 19, 1997 note: "p" in assembly line pos i ti on i ndi cates " l ead- f r ee" in the assembly line "c" logo t his is an irl3103l lot code 1789 example: line c dat e code we e k 1 9 ye ar 7 = 1997 part number part number logo lot code as s e mb l y internat ional rect if ier product (optional) p = d e s i gn at e s l e ad- f r e e a = assembly site code we e k 1 9 ye ar 7 = 1997 dat e code or  
         
      downloaded from: http:///
irgb/s/sl6b60kdpbf www.irf.com 15 ir world headquarters: 101n. sepulveda, el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 01/2013 data and specifications subject to change without notice. this product has been designed and qualified for industrial market. qualification standards can be found on irs web site. notes:  this is only applied to to-220ab package   this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994.  energy losses include "tail" and diode reverse recovery.  v cc = 80% (v ces ), v ge = 20v, l = 100 h, r g = 100 .  
      dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRGS6B60KDPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X